Hidden Sector Baryogenesis

Jason Kumar (Texas A&M University)
with Bhaskar Dutta (hep-th/0608188)
and with B.D and Louis Leblond (hep-th/0703278)
Basic Issue

• low-energy interactions seem to preserve baryon number
 – but world has more baryons than anti-baryons
 – how can we generate this asymmetry?
 • baryogenesis
 – Sakharov conditions
 • B violation (obvious)
 • C and CP violation (otherwise, create baryon/anti-baryons at same rate)
 • out-of-equilibrium (can’t generate asymmetry in thermal equilibrium)
A few major models

- some major ideas
 - GUT baryogenesis
 - Affleck-Dine
 - leptogenesis

- electroweak baryogenesis
 - treat $U(1)_B$ as a global symmetry
 - left-handed quarks have weak interactions, but not right-handed
 - mixed anomaly $U(1)_B - SU(2)_L^2$
 - anomaly provides B violation via sphalerons (1 negative eigenval.)
 - sphaleron processes transition between different electroweak vacua, which changes baryon number

$$\partial_\mu J_B^\mu \propto \text{Tr}[F_W \wedge F_W] = \partial_\mu n_{CS}^\mu(A_W)$$
So, what happens?

• need EWPT to be 1st order
• need C and CP violation
 – CKM not enough
 – need complex Higgs phase
• as universe cools, T drops below T_c
 – bubbles nucleate
• at bubble walls
 – out of equilibrium
 – CP and B violation
 – end up with net baryon flow into broken region
• technical details depend on details of electroweak parameters
Constraints on EWBG

- need sphalerons to shut down after transition
 - otherwise “washout”
 - need $\langle \phi \rangle \gg T_C$

- electroweak data
 - need EWPT - 1st order
 - need sphalerons to shut down
 - constraint on m_H
 - need large enough CP violation
 - leads to EDM constraints

- status of EWBG
 - EWBG in SM
 - need $m_H < 70$ GeV to get first order phase trans.
 - ruled out
 - in MSSM
 - need $m_H < 120$ GeV
 - 120 GeV $< m_{\text{stop}} < m_{\text{top}}$
 - LEP $- m_H > 114$ GeV
 - tight squeeze
 - in NMSSM
 - extra degrees of freedom
 - easier constraints
Our angle → Top down

• start from a string construction of SM-like effective field theory (we’ll use *intersecting brane models*)
 – is there a “natural” way to get baryogenesis in this class of models?
 – Start with IBM motivation, but not tied down to a specific model → “IBM motivated” but an EFT model

• IBM set-up → IIA compactified on orientifolded CY-3-fold – *N=1 SUSY*
 – D6-branes fill space-time, wrap 3-cycle
 – SM gauge theory on branes
 • $\text{SU}(3) \times \text{SU}(2)_L \times \text{U}(1)_Y \times \text{hidden}$
Branes and Matter

- **chiral matter** arises from strings living at topological intersection of branes
- divide up branes into two classes
 - "visible" sector branes \rightarrow SM particles arise from strings which begin and end on these branes
 - "hidden" sector branes \rightarrow the rest
- hidden sector branes are generic
 - we need them to cancel space-filling charges (RR tadpoles must vanish)

- I_{ab} chiral multiplets in the bifundamental of $G_a \times G_b$
Generic anomalies

• but net chiral multiplets in bifund. of $G_a \times G_b$ gives a mixed anomaly $U(1)_a - G_b^2$

• is this generic? yes

• take $T^6/Z_2 \times Z_2$
 – generically, $I_{ab} \neq 0$

• also non-zero for more generic CY compactification
 – cycles $\alpha_i, \beta_i \rightarrow$ say a wraps α_1
 – $I_{ab} = 0$ only if $b_1 = 0$

\[I_{ab} = \prod_{i=1}^{3} (n_i^a m_i^b - m_i^a n_i^b) \]

\[\int \int \Omega \wedge \overline{\Omega} = \delta_i^j \sum a^i \alpha_i + b^j \beta^j \]
So what’s the upshot?

- have brane stack “b” where SU(3)_{qcd} lives
 - U(1)_B is the diagonal subgroup of U(3)_{qcd}
- hidden sector group G lives on brane stack “g”
 - generically, l_{bg} is non-zero
 - chiral matter transforming under U(1)_B and G
 - U(1)_B-G^2 mixed anomaly
 - G-sphaleron/instanton processes violate baryon number
- can use this to get baryogenesis in IBM

\[\partial_\mu J^\mu_B \propto \text{Tr}[F_G \wedge F_G] \]
What do we need?

• **all cubic anomalies must cancel**
 – automatic in IBM (RR-tadpole cancelation)

• **non-vanishing \(U(1)_B \)-\(G^2 \) anomaly**

• **vanishing \(U(1)_Y \) anomaly**
 – easy to arrange – \(U(1)_Y \) arises a lin. comb. of several \(U(1)'s \) – can find a set which is non-anomalous
 – needed for viable IBM

• **Yukawa coupling permitting exotic baryon decay to SM baryons**
 – can also arrange in IBM – fields with appropriate charge arise from generic intersections
 • **worldsheet instantons** generate coupling
Specific Model

- **4 stacks**
 - a – $U(3)_{qcd}$
 - b – $U(1)_{T3R}$
 - c – $U(1)_L$
 - g – hidden group G
- more hidden sectors to cancel RR-tadpoles
- exotic chiral mults. are q, λ, η, ξ
- $I_{ag}=2$, $I_{gb}=4$, $I_{gb'}=1$, $I_{cg}=1$
- no $U(1)_Y$ anomaly
- but $U(1)_B$, $U(1)_{B-L}$ anomaly

\[
U(1)_Y = \frac{1}{2} \left(U(1)_B - U(1)_L + U(1)_{T3R} - U(1)_G \right)
\]

<table>
<thead>
<tr>
<th></th>
<th>Q_B</th>
<th>Q_G</th>
<th>Q_{T3R}</th>
<th>Q_L</th>
<th>Q_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2\times q_i$</td>
<td>1/3</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>2/3</td>
</tr>
<tr>
<td>$4\times \lambda_j$</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>η</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ξ</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
So what happens…?

- like in EWBG, T drops as universe expands
 - at $T=T_C$, we have a phase transition where G either breaks or confines
 - needed for viable IBM, else chiral exotic fermions
- if transition is 1st order, nucleate bubbles of broken symmetry vacuum
 - at bubble walls, out of equilibrium
 - can have C and CP violation generically in G sector
 - G-sphalerons/instantons violate B
 - all Sakharov conditions satisfied
- so in this IBM scenario, baryon asymmetry can be generated
Points to note

• this is “natural” in IBMs
 – many hidden sectors
 – each generically has anomaly with $U(1)_B$
 – each must break/confine to avoid exotics (good IBM)
 – if even one has 1st order transition \rightarrow it can work

• generic $U(1)_{B-L} - G^2$ anomaly
 – EW sphalerons cannot wash out asymmetry even if generated above weak scale
 – avoids trouble with GUT baryogenesis
 – B-L anomaly could vanish (say Pati-Salam), but still works if G breaks at or below EW scale – gravity mediation

• details (like strength of transition, transport mech., local or non-local, etc.) are model dependent
 – not boxed in the way EWBG is
Can also realize **HSB at inflation’s end**

- Louis discussed an inflation scenario in IBMs \(\rightarrow \) inflaton and waterfall fields are bi-fundamentals
- when waterfall field condenses, energy dumped into long-wavelength modes
 - tachyonic preheating (FGGKLT)
 - can excite sphaleron
- during tachyon condensation, out of equilibrium
- if \(I_{bg} \neq 0 \rightarrow U(1)_B G^2 \) mixed anomaly
 - baryon violation
 - with C and CP violation, can get baryogenesis
- Tranberg & Smit showed (numerically) that one can generate baryons in EWBG with tachyonic preheating
 - problem \(\rightarrow \) low inflation scale
- since HSB has \(U(1)_{B-L} G^2 \) mixed anomaly, can work at higher scale
- whether numerics work out is model specific....